Meta Heuristic Approach for Automatic Forecasting Model Selection
نویسندگان
چکیده
Selection of appropriate forecasting models with their optimized parameters for a given business scenario is a challenging task and requires reasonable expert knowledge and experience. The problem of selecting the best forecasting model becomes computationally complex when the business needs forecasts on thousands of time series at a given time period. Many a times business users are interested in adapting the best parameter settings of proven forecasting models of the past and use them for further predictions. This approach facilitates the users to identify the forecasting model with a parameter value which minimizes the average of forecast errors across all the time series. This paper proposes a genetic algorithm based solution approach which simultaneously suggests the suitable forecasting model and its best parameter(s) value which minimizes the average mean absolute percentage error of all the time series. This approach is tested on randomly generated data sets and the results are compared with few randomly selected samples. For a fair comparison the samples are tested in SAS 9.1 and the results are compared with sample results which used GA suggested forecasting model and parameter values. Meta Heuristic Approach for Automatic Forecasting Model Selection
منابع مشابه
Application of HS Meta-heuristic Algorithm in Designing a Mathematical Model for Forecasting P/E in the Panel Data Approach
In financial markets such as Tehran Stock Exchange, P/E coefficient, which is one of the most well-known instruments for evaluating stock prices in financial markets, is considered necessary for shareholders, investors, analysts and corporate executives. P/E is used as an important indicator in investment decisions. In this research, harmony search metaheuristic algorithm is used to select opti...
متن کاملA Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...
متن کاملIran's Electrical Energy Demand Forecasting Using Meta-Heuristic Algorithms
This study aims to forecast Iran's electricity demand by using meta-heuristic algorithms, and based on economic and social indexes. To approach the goal, two strategies are considered. In the first strategy, genetic algorithm (GA), particle swarm optimization (PSO), and imperialist competitive algorithm (ICA) are used to determine equations of electricity demand based on economic and social ind...
متن کاملA Bi-Level Meta-heuristic Approach for a Hazardous Waste Management Problem
This study concentrates on designing a medical waste management system with a hierarchical structure, including a local government and a waste management planner. The upper-level seeks to design and control the waste management facilities by minimizing the environmental risks related to the disposal of medical waste. While the lower-level model is to determine the waste collection plans by only...
متن کاملFORECASTING TRANSPORT ENERGY DEMAND IN IRAN USING META-HEURISTIC ALGORITHMS
This paper presents application of an improved Harmony Search (HS) technique and Charged System Search algorithm (CSS) to estimate transport energy demand in Iran, based on socio-economic indicators. The models are developed in two forms (exponential and linear) and applied to forecast transport energy demand in Iran. These models are developed to estimate the future energy demands based on pop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJISSCM
دوره 6 شماره
صفحات -
تاریخ انتشار 2013